
TheBeagle
Compiler

byAIANBIRD

THE BEAGLE COMPILER
APPLESOFT SPEED-UP PROGRAM

by Alan Bird

ISBN 0-917085-51-5

Published by Beagle Bros Micro Software, Inc.
3990 Old Town Avenue

San Diego, California 92110

TABLE OF CONTENTS

INTRODUCTION 2-7
SELLING COMPILED PROGRAMS 6

HOW TO...
Run an Applesoft program at compiled speed 10
Save a program on disk in compiled format 11
Run a compiled program from disk 12
Make program changes 13
Make control-C stop a compiled program 14
Run a program at normal speed 15
Specify a new address for a program 16
Write programs for maximum compiled speed 17
Compile programs that use the CHAIN command 18
Compile programs that use STORE and RESTORE 19
Write ampersand routines for compiled programs 20

ERRORS 23-25
COMPILER AND COMPILER.5YSTEM 26-27
OTHER PROGRAMS ON THE DISK 28-29
APPLESOFf/PRODOS COMMAND SUMMARy 30
MODIFYING APPLESOFf VIA THE COMPILER 34

BEAGLE COMPILER AUTHOR, ALAN BIRD, LEAVES FOR WORK

3

WELCOME TO
THE BEAGLE COMPILER!
The Beagle Compiler does one thing-it rewrites Applesoft BASIC

programs so they run faster, just as if they were written in
machine language. Machine language programs run much faster
than Applesoft programs because no time is wasted interpreting
"human" commands like HOME, GOTO, IF, THEN, and so on.
While the Beagle Compiler doesn't actually convert programs
into machine language (it actually converts them into its own
language), the effect is the same.

Applesoft BASIC may be slower than machine language, but
it is far easier (for most of us) to write programs with-and it's
easier to read. The Beagle Compiler gives you the best of both
worlds-easy-to-write programs and machine language speed.

BACK IT UP
The Beagle Compiler disk is not copy-protected, so you can (and
should) make a backup in case something happens to the
original. Use the copy program that came with your Apple, or
the 35-second DISK.COPY program from our Extra K disk. You
may also transfer files from disk to disk using our Big U disk's
FILEMOVER program or one of Apple's utilities.

Please don't give copies of our disks and programs away to
your friends. Every illegal copy is a vote for copy protection and
against friendly software. If you plan on giving copies of your
own compiled programs away, read page 6.

COMPILER FACTS
Just like it says in the ads, "after you boot the Beagle Compiler
disk, you can run almost any Applesoft program at machine
language speed. FAST!"

HOW FAST IS IT?
Unscientific testing shows that compiled programs tend to run
between 2 and 15 times as fast as Applesoft programs; it depends
on what the program actually does. Some functions like string
and variable manipulations show a tremendous speed increase.
Other things like floating point calculations aren't affected at all.

WHEN SHOULDN'T YOU COMPILE?
Machine language speed isn't always an advantage-some
programs, like question-and-answer programs, work just fine in
plain old Applesoft. Too much speed will make many programs
impossible to use.

Some programs that benefit from compiling may have
certain sections that will need to be slowed down. Since you
can't compile just part of a program, you'll have to make
adjustments in Applesoft before compiling.

WHEN CAN'T YOU COMPILE?
Most Applesoft programs compile with ease. Occasionally, a
program will be too large to compile or contain commands that
are incompatible with the compiling process.

Non-Applesoft programs won't compile. (You can't compile
AppleWorks for example-it isn't written in Applesoft).

Copy-protected programs won't compile unless you unprotcct
them first. Don't ask us how-we don't know how.

Dos 3.3 programs will usually compile after you convert them
into ProDOS (use one of Apple's programs to do the converting).
Make sure a converted program works before you compile it.

5

SPECIAL BENEFITS OF
THE BEAGLE COMPILER
The Beagle Compiler is better than any compiler we've ever
seen. And we've seen a few.
• Other compilers do not support ProDOS.
• Other compilers will not compile programs "on the spot"

using the standard RUN command.
• Other compilers produce code that is significantly larger than

the original program. The Beagle Compiler does the opposite.
• Other compilers take minutes instead of seconds to convert

programs. And then you still might have problems.
• Other compilers choke on common Applesoft statements like

HIMEM, LOMEM, DEF FN, etc.
• Other compilers require many more program changes than

the Beagle Compiler requires. For example:
10 MAX=100:DIM A$(MAX),B$(MAX),C$(MAX*2)

Other compilers would look askance at the above program
line and make you change it to:

10 MAX=100:DIM A$(100),B$(100),C$(200)
Then you have to recompile.

THERE ARE SOME MEMORY RESTRICTIONS
Booting the Beagle Compiler disk will cost you about 11K of
main memory. You can cut this figure in half by loading only
one of the Compiler's two files-see page 26.

ABOUT PROGRAM EDITORS
Most Applesoft programmers use some kind of program editor.
Unfortunately, you cannot have non-relocatable programs like
Beagle Bros' G.P.L.E. (Global program Line Editor) in memory
with the COMPILER.5YSTEM file-sorry, there just isn't room.
However PROGRAM WRITER by Alan Bird (!) will work just fine.

H you are hooked on G.P.L.E., boot normal ProDOS to use
G.P.L.E. to write and test programs, then boot the Beagle Compiler
to run them at compiled speed. The COMPILER file (see page 26)
can be in memory with G.P.L.E. as long as you install G.P.L.E. first,
then the COMPILER file.

To use PROGRAM WRITER, you must ir,stall things in the
proper order: (1) the COMPILER.5YSTEM file, (2) PROGRAM WRITER
language card version, (3) the COMPILER file.

6

~-
, -) ,

SELLING (OR GIVING AWAY)
COMPILED PROGRAMS

You may legally sell or give away copies of programs that you
own and have compiled with the Beagle Compiler. Since the
Compiler itself is protected by copyright laws, the recipient of
your programs must use his or her own purchased copv of the
Compiler to run them.

There is an alternative: If you want to include the Beagle
Compiler's COMPILER.5YSTEM file on disks that you will be selling
or giving away, you may do so after paying a very reasonable
licensing fee to the Compiler's author, Alan Bird. Call or write
for more information:

The Software Touch
c/o Compiler Licensing
9625 Black Mountain Road, #204
San Diego, California 92126 ?-8;"'- "j I lot l

Or phone The Software Touch: (619) 549-3091

After a licensing contract has been signed and fees paid, only the
file CO~PlLER.sYSTEM may be put on the disk you are selling or
giving away. This is the file that actually runs compiled
programs. Under no circumstances are you permitted to include
the COMPILER file on disks that you sell or give away.

r -$.5,' '\/e~
L,<.<~", st r« u"l

;,,~'"
6,q.l-t;J.- ;~C>.,l.~

Noi CoJoOt 'P~hloJe. Wl~ Gve. phi c..S'
Be" ql.e. ~ ~n\SJ 5"

Xi'va- ~

j

7

IS THIS MANUAL UP TO DATE?
RUN NOTES NOW TO FIND OUT.

Run the Applesoft NOTES program on the Beagle Compiler disk
to learn about any changes or corrections that apply to this
instruction manual.

1 FOR A=800 TO 811:
READ B: POKE A,B:

~
NEXT: CALL 800

2 DATA 185,208,208,
9,128,32,237,253,2
00,76,32,3

THE BASIC FACTS
In writing this manual, we assume you know the "basics" about
loading and saving files, running Applesoft programs and so on.
Even if you don't, you still should be able to reap most of the
benefits of the Beagle Compiler by reading pages 1-15.

We.hizbly recommend Apple's excellent programming
manuals, especially the Applesoft BASIC Programmer's
Reference Manual and ProDOS User's Manual.

FILE. F

FILE.D

FILE. E

FILE.A

FILE. B

rILE. C

8

HOW TO USE
THE BEAGLE COMPILER

RULE #1:
APPLESOFT PROGRAMS ONLY

The Beagle Compiler only works with unprotEcted ProDOS-bascd
Applesoft BASIC programs. You must have a copy of the program
you want compiled saved on a ProDOS disk.

When you catalog a disk (by typing CAT), "BAS" identifies a
file as being Applesoft BASIC

ISAMFLE.DISK

NAME TYPE

BAS {=You f£11 compile BASIC programs.
BIN {=You can't compile binary files.
TXT {= You can't compile text files.
SYS {=Forget it.
VAR {=Ditto.
COM* {=Here is a program that has been

saved in compiled format.

'COM will read as '1NT" if the Compiler isn't in memory.

RULE #2:
BE SURE THE COMPILER IS INSTALLED

The Compiler's commands won't work until you "install" the
Compiler in your Apple's memory. The easiest way to do this is
to BOOT THE BEAGLE COMPILER DISK (put the disk in your
main drive and turn on your Apple).

There are other ways to install the Compiler that save
memory and/or disk space-see pages 26 and 27.

EXPERIMENT
WITH
TESTPROGRAM

9

RULE #3:
WATCH OUT FOR CERTAIN THINGS

• ProDOS's CHAIN, STORE and RESTORE commands make
programs require special treatment-see pages 18 and 19.

• Ampersand (&) statements with parameters and the routines
that they call must be altered by someone with assembly
language experience-see page 20.

• Some Applesoft commands are not compilable-specifically
co T, DEL, LIST, LOAD, OTRACE, RECALL, SAVE, SHLOAD,
TRACE and STORE (ProDOS's LOAD, SAVE and STORE will
compile). Removing any of these commands will not harm
99.6502% of the programs we have seen.

• Weird memory pokes are unpredictable. If the program you
want to compile pokes values into Zero Page or BASIC.5YSTEM
or some other exotic place, go ahead and try compiling-if
you're lucky, you'll have no problems at all.

• Giant Applesoft programs are usually compilable if you
compile them to disk without the COMPILER.SYSTEM file in
memory-see page 27.

~
- '\ /;-
~ .!~JL-_"#

~/- ':;::;§W...".-cct -

i

There is a short
Applesoft program
called TESTPROGRAM
on the Beagle
Compiler disk. No
big deal, but it uses a
lot of Applesoft
commands and
serves as a good
demo of how the
Compiler works. In
the examples on the
following pages,
almost any
Applesoft program
may be substituted
for TESTPROGRA:Vl.

10

HOW TO RUN AN APPLESOFf PROGRAM
AT COMPILED SPEED

This is easy. First, be sure the Compiler is installed in memory (it
is if you have booted the Beagle Compiler disk). Now just run
your program like you always do, by typing:

RUN NAME

or -NAME

(NAME is the name-or pathname-of your Applesoft program.)

After a brief "COMPILING..." message, your program should be
running at machine language speed. If this isn't the case, the
Compiler probably isn't installed. If you see an error message on
the screen, read pages 20-22.

Since compiled programs have no line numbers, the
ProDOS command RUN NAME, @123 will not work (123
represents any program line number).

QUITIING A PROGRAM
You can often quit an Applesoft program by pressing Control-Co
This might not work, however, when you're running at
compiled speed (see page 12 for a quick fix).

Control-Reset will almost always let you quit. Some
programs, however, are written so you can't quit no matter
what, and you may need to reboot to escape.

RE-RUNNING A PROGRAM
After you quit running a compiled program, you may type RUN
to re-run it. If you get a NOT A COMPILED PROGRAM error message,
something has disturbed the compiled program in memory.

EXAMPLE
To run TESTPROGRAM from the Beagle Compiler disk at
compiled speed:
1. Boot The Beagle Compiler disk.
2. Type RUN TESTPROGRAM

or type -TESTPROGRAM

3. To stop the program, press Control-Reset.
4. Type RUN to run TESTPROGRAM again.

11

HOW TO SAVE A PROGRAM ON DISK
IN COMPILED FORMAT

To save a compiled version of an Applesoft program on the
current disk, type:

COMPILE NAME,NEWNAME
(NAME is the name-or pathname-of your Applesoft program on
disk. NEWNAME is the name-or pathname-for saving the
compiled file.)

Your Applesoft program will be loaded, compiled and then
saved on disk. A FILE TYPE MISMATCH error message here might
mean that you used the same name for both files. You may use
the same name for the compiled file if you are saving onto
another disk or directory. For example, you could type:

COMPILE /DISK1/NAME,/DISK2/NAME
This command would load NAME from DISKl and save it as
NAME on DISK2 in compiled format.

Cataloging the disk will reveal compiled programs as type
COM (that's COM for cOMpiled instead of BAS for BASic). If you
catalog without the Compiler installed, COM will appear as "INT".

EXAMPLE
To save TESTPROGRAM on disk in compiled format:
1. Be sure the Compiler is installed.
2. Insert the Beagle Compiler disk in drive 1.
3. Set the prefix if necessary by typing PREFIX, 01
4. Type COMPILE TESTPROGRAM, TESTFAST

This will save a new version of TESTPROGRAM called
TESTFAST on the disk. When you catalog the disk (by
typing CAT), you will see TESTFAST listed as a COM file.

WHY SAVE IN COMPILED FORMAT?
• You save time by not having to wait for compiling each time

you run the program.
• You save disk space because compiled files are generally

smaller than Applesoft files.
• You save memory space because the COMPILER file (see page

26) doesn't need to be in memory when you run the program.
• Your programs aren't listable and snoopers can't look at them

and change them. (This can be a disadvanta$e).

12

HOW TO RUN A COMPILED PROGRAM
FROM DISK

You run a compiled (COM) file from disk the same way you run
an Applesoft (BAS) file. Type:

RUN NAME

or -NAME

(NAME is the name-or pathname-of your compiled program.)

EXAMPLE
To run TESTPROGRAM in compiled format:
1. Compile TESTPROGRAM so it creates the COM file TESTFAST

(follow the steps in the previous example).
2. Type RUN TESTFAST or -TESTFAST

The COMPILER.5YSTEM file must be installed to run compiled
programs (it is if you booted the Beagle Compiler disk). You can
save memory by not installing the COMPILER file-see page 27.

13

HOW TO MAKE A CHANGE
TO A COMPILED PROGRAM

You can't change a compiled program. Instead, change the
Applesoft "source" program (the one you compiled in the first
place). Make changes the way you always do, and always be sure
to save the changed program to disk before recompiling.

Read the note about program editors G.P.L.E. and PROGRAM

WRITER on page 5.

EXAMPLE
To make a change to TESTPROGRAM:

1. Type LOAD TESTPROGRAM
2. Type LIST 10 to see program line 10.
3. Type 10 X=5 to change line 10. This will have the effect

of changing the patterns on the screen when the program
is running.

4. Type SAVE TEST2 to save the Applesoft change.
(Any legal file name may be used.)

5. With the Compiler installed, type RUN TEST2 or
-TEST2 to run at compiled speed.
Or type COMPILE TEST2, NEWTEST2 to save in compiled
format.

6. To make more changes type LOAD TEST2 and go back to
step 2.

14

HOW TO MAKE CONTROL-C
STOP A COMPILED PROGRAM

Normally Control-C will stop an Applesoft program but have no
effect on compiled programs (except in response to INPUT
statements). To make Control-C halt a compiled program, add a
RESUME statement somewhere in the program you are going to
compile. Think twice before using this technique. because it will
have the side effect of making your compiled program run
somewhat slower.

The RESUME statement has an undesirable effect on
Applesoft programs, so you should put it somewhere where it
can't possibly get executed-like after the end of your program
(END: RESUME).

EXAMPLE
To allow TESTPROGRAM to be halted with Control-C after it is
compiled:
1. Type LOAD TESTPROGRAM

2. Type 60000 END: RESUME to add program line 60000.
(60000 may be replaced with any line number 1-63999; just
be sure the RESUME statement doesn't get executed.)

3. Type SAVE TESTC to save the changed version.
(Any legal file name may be used.)

4. Type -TESTC to run the program.
5. Press Control-C to stop the program.

A NEW ?BREAK MESSAGE
When your compiled program is stopped by Control-C (or a STOP
statement or an error), you will see an error message something
like ?BREAK AT $OABC. This tells you the hexadecimal address in
memory where the program stopped (instead of which line
number, because there are no line numbers in compiled
programs). See page 23 for more information about this number.

15

HOW TO RUN A PROGRAM
AT NORMAL SPEED

The best way to run a program at normal speed is to remove the
Compiler from memory by booting a normal ProDOS disk.

Warning:
The method described below is not guaranteed to work. In fact,
with certain programs, it could cause serious problems that
require you to reboot.

Always SAVE YOUR PROGRAMS before running them!

After taking the warning above into consideration, load an
Applesoft program from disk and type : RUN. Notice that this
command begins with a colon (:). If you omit the colon you'll
get a NOT A COMPILED PROGRAM error message.

EXAMPLE
To run TESTPROGRAM at normal speed with the Compiler
installed:
O. Read the Warning above.
1. Type LOAD TESTPROGRAM
2. Type :RUN
3. To quit, press Control-C or Control-Reset. (~

4. To see it again, type :RUN again

16

HOW TO SPECIFY A NEW ADDRESS
FORA PROGRAM
(for advanced programmers)

Compiled programs normally load and run at address 2049
($0801), just like Applesoft programs. You may run a compiled
program at a different address by changing the Applesoft
program before it is compiled.

For example, insert the following line at the beginning of
TESTPROGRAM to run it above hi-res page 1 at 16384 (54000):

1 IF PEEK(104)<>64 THEN PO~E 16384,0: POKE
104,64: PRINT CHR$(4) "RUN TESTPROGRAM"

Replace the 64's with 96's and the 16384 with 24576 to load the
program above hi-res page 2 at 24576 (56000).

You may also specify an address with a RUN command
followed by a comma and the address. The following command
will compile and run an Applesoft program-or run a compiled
program-above page 1 and page 2 respectively:

RON NAME, A$4000
RON NAME, A$6000

(Note: In this procedure, "RUN" cannot be replaced with a
hyphen.)

17

HOW TO WRITE PROGRAMS
FOR MAXIMUM COMPILED SPEED
(for advanced programmers)

The one major point to keep in mind to make compiled
programs run faster is avoid using floating point values
whenever possible. The Compiler does all of its math using
integer values whenever it can-integers process much faster
than floating point values.

Floating point is used:
• when a value has a fractional part (i.e. 3.5).
• when a value is greater than 32767 or less than -32767.
• when division is used in an expression.
• when any of the following functions are used:

ATN, cos, EXP, LOG, RND, SIN, SQR or TAN

BASIC TECHNIQUES DON'T APPLY
The following programming methods DO speed up Applesoft
programs but they DO NOT speed up compiled programs (they
also don't do any harm).
• Using real variables instead of integer variables.

(Using A%=3 instead of A=3 will not affect a compiled
program's speed.)

• Using variables instead of numeric constants.
(In a compiled program, A=PI executes no faster than A=3.14159.)

• Putting frequently-executed lines and subroutines near the
beginning of a program.

• Putting frequently-used variables near the beginning of a
program.

18

HOW TO COMPILE PROGRAMS THAT USE
THE CHAIN COMMAND

The ProDOS CHAIN command works just like the ProDOS RUN
command, but existing variables stay intact.

Programs that use CHAIN share common variables and
must be given special treatment for compiling to be successful.
Otherwise a FILE TYPE MISMATCH error will occur.

All programs involved with a CHAIN command must be
compiled to disk using the COMPILE command to compile one
program and a special COMMON command to compile the other
program(s). CO~1MON'ssyntax is simlar to COMPILE:

COMMONNAME,NEWNAME

COMMON must be used immediately after COMPILE. If you later
make a program change or add a new file that will CHAIN to or
from the existing (already compiled) files, you must start over
and recompile all of the files.

EXAMPLE
Say you have three programs- MAIN.PRill:!, PROG.A and
PROG.B-that share variables. MAIN.PROG is the startup
program and it will CHAIN to PROG.A which will CHAIN to
PROG.B which will CHAIN back to MAIN.PROG. Here's what
you do to compile these programs:

1. Compile MAIN.PROG with the usual COMPILE command:
COMPILE MAIN.PROG,MAIN.COMP
(Any legal file name may be used.)

2. Immediately compile each program that is to share data
by using the COMMO command:
COMMON PROG.A,PROG.A.COMP
COMMON PROG.B,PROG.B.COMP

3. To run the program(s) with the Compiler installed, type:
RUN MAIN. COMP
or -MAIN. COMP
(Note: Even the COMMONed files may be run.)

19

HOW TO COMPILE PROGRAMS THAT USE
STORE AND RESTORE COMMANDS

Note: This page applies to the ProDOS STORE and RESTORE
commands. The Appleso(t RESTORE command will compile just
fine. The Applesoft STOl< E command is obsolete.

The ProDOS STORE command normally saves the variables in
memory on disk in a VAR file. RESTORE loads these variables
back into memory.

Programs that use STORE and RESTORE share common
variables and must be given special treatment for compiling to
be successful. The programs must be compiled to disk using the
COMPILE command on one program and the COMMON command
on the other (see CHAI, , previous page).

COMMON must be used immediately after COMPILE. If you
later make a program change or add a new file that shares
variables with the existing (already compiled) files, you must
start over and recompile all of the files.

STORE and RESTORE in compiled programs create and use
variable files of type CVR instead of VAR.

EXAMPLE
Say you have a program called OATASHUP that uses the
STORE command to write variables that will be loaded
(using RESTORE) by a program called BIG.GAME. Here's what
you do to compile these two programs:

1. Type COMPILE BIG. GAME, BIG. GAME. COMP
(Any legal file name may be used.)

2. Immediately type:
COMMONDATA.SETUP,DATA.SETUP.COMP

3. To run either program with the Compiler installed, type:
RUN BIG. GAME. COMP or -DATA. SETUP. COMP . \

'---.fl. \1J\
! \: \!~\i,i I

,,\ I

20

HOW TO WRITE AMPERSAND ROUTINES
FOR COMPILED PROGRAMS
(For advanced assembly language programmers only.)

An ampersand routine without parameters (& by itself) will
compile just fine. Ampersand routines with parameters (like
&XXX or &XXX,YYY,ZZZ) are a different story. Both the ampersand
command and the machine language routine itself must be
modified.

CHANGE#!:
USE && INSTEAD OF &
When calling an ampersand routine from a compiled program,
you must use two consecutive ampersands (for example, you
would use &&SORT instead of &SORT). This is how the Compiler
detects programs that have or have not been modified.

CHANGE #2:
RE-EVALUATE YOUR PARAMETERS
With the Compiler installed, a JSR to $98FD will evaluate the
next parameter after an ampersand:
• If the parameter is a string, a pointer to the string will be

found at $F6,$F7. All strings in a compiled program are stored
with the length in the first byte.

• If the parameter is a numeric value and the carry flag is clear,
the value is an integer with its low byte in the X-register and
the high byte in the Accumulator.

• If the parameter is a numeric value and the carry flag is set,
the value is floating point and stored in the FAC (at $9D).

There is no way for the Compiler to determine if the correct
parameters are being passed to your ampersand routines. If the
correct parameters are not there, the program will most likely
crash miserably.

21

EX&MPLE
Let's write an ampersand routine that prints the first character in
string S$, N times. Our Applesoft program looks like this:

20 S$="COW": N=80
50 &&N,S$

This program's mission is to print 80 C's. The assembly code
would look like this:

($F'6),Y ;get 1st character in string
#$80 ; set MSB
$F'DED ;print character

I
I JSR

BCS
eMF
BNE
TXA
PHA
JSR
PLA
TAX
BEQ
LDY
LOA
BEQ
INY
LDA
ORA

LOOP JSR
DEX
BNE

DONE RTS
ERROR LDX

JMP

$98F'D
ERROR
#0
ERROR

$ 98CD

DONE
#0
($F'6), Y

DONE

LOOP

#53
$98F'1

;evalute N
;reject floating pt.values
;evaluate high-byte
;don't accept anything>256

;save N
;evalute S$
;restore N
;use as counter
; counter was 0

;get length of string
;null string

; loop
;return to compiler
; "ILLEGAL QUANTI TY ERROR"
; handle error

r
(

22

HEY. COME BACK!
YOUR PROGRAM
JUST CRASHED!

23

COMPILED PROGRAM
EXECUTION ERRORS

An Applesoft or ProDOS program error will cause a compiled
program to crash just like an uncompiled program. The only
difference is that compiled programs produce strange error
messages like:

?ILLEGAL QUANTITY ERROR AT SOARe.
Uncompiled programs, as you know, produce messages like:

?ILLEGAL QUANTITY ERROR IN 123.
In this comparison, $OABC is the hexadecimal location (address)
in memory of the error, and 123 is the line number of the error
(compiled programs have no line numbers).

Since line numbers are easier to work with than memory
locations, the most efficient way to trap errors is to test your
programs and get them working correctly before you compile.

THE PRINT.LINES PROGRAM
CONVERTS $ADDRESSES TO LINE NUMBERS
(For advanced programmers)

If you insist on ignoring our advice above: To determine the
line number that is equivalent to a hex error address, compile a
program using the COMPILE or RUN command, then:

1. (optional) Turn on your printer by typing PR#1.

2. With the I3eagle Compiler disk in the current drive, type:
BRUN PRINT. LINES or -PRINT. LINES

3. Type PR#O to deactivate your printer if necessary.

The numbers produced by the PRINT.LlNES program arc the
starting hex addresses and matching decimal line numbers.

24

ERRORS FOUND
DURING COMPILING

If your Applesoft program contains errors, the Compiler will do
its level best to find them during the compiling process. Each
offending line will be listed with the approximate location
marked. The Compiler will then ask "CONTINUE WITH ERRORS?"
to see if you want to go ahead and run the program anyway
(some "errors" are intentional or cause no problem). If you
answer no, compiling will stop so you can make repairs. Save
your repaired program on disk; then recompile it.

Many errors will not be found by the Compiler-this
includes most ProDOS errors and errors inside quote marks. Here
are some common errors that will be found during compiling:

<?> (SYNTAX ERROR)
• A <?> symbol could mean your program contains an Applesoft

keyword that is unacceptable to the Compiler- specifically
CONT, DEL, LIST, LOAD, NOTRACE, RECALL, SAVE, SHLOAD, STORE
and TRACE. Programs with these commands will not compile.
(Note: ProDOS's LOAD, SAVE and STORE will compile).

• Other culprits are those you have encountered before, such as
missing parameters (like HPLOT with no coordinates), type
mismatches (like A$=3), misspelled keywords (like PIRNT),
missing commas and colons, and so on. Your Applesoft
instruction manuals will help you make program repairs.

<#> (UNDEFINED LINE NUMBER ERROR)
A <#> symbol usually means your program used a GOTO or
GOSUB to a nonexistent line number.

<A> (ARRAY DIMENSION ERROR)
An <A> means your program has illegally allocated arrays. For
example: A(25)=3: A(6,3)=3

<*-> (ILLEGAL QUANTITY ERROR)
The only illegal quantities the Compiler will find are illegal
addresses (for example, POKE 90000,0). Other illegal quantities (like
HPLOT 90000.0) won't be noticed until your program crashes.

INCLUDE APPENDED MACHINE CODE?
This message means the Compiler has found some extra space at
the end of your program. This could be useless garbage or it
could be valuable data or a routine that is called by the program.
Whcn unsurc, play it safe by answering Y (Yes, include the code).

25

KEYBOARD
ERRORS

These errors may occur immediately after you type a command:

FILE TYPE MISMATCH
• Maybe you used the same two names when compiling a file to

disk (COMP ILE NAME, NAME).

• Or you used a command like COMP ILE NAME, NEWNAME and
NEWNAME was already on the disk as a type other than COM.

• Or you ran a program that uses CHAIN, STORE or RESTORE and
you didn't compile with the COMMON command (page 18-19) .

• Or you wrote an Applesoft (BAS) STARTUP program. STARTUP
must be a compiled (COM) file.

NO BUFFERS AVAILABLE
• You may have tried to install the the COMPILERSYSTEM or

COMPILER file more than once. One time is enough.
• Or you may have tried to run a program below address S0801.
• Or you may have pressed Control-Reset during a catalog.
Solution: Try again or reboot.

NOT A COMPILED PROGRAM
With the Compiler in memory, you typed RUN after loading an
Applesoft program. See pages 10 and 15.

PATH NOT FOUND
Translation: File Not Found. If you're sure the not-found file is
on the disk and you spelled its name right, try typing PREFIX/
or PREFIX, 56, Dl (use your slot and drive numbers) or
PREFIX/DIR/5UB (use your directory/subdirectory names).

PROGRAM TOO LARGE
• Your Applesoft program is too large to fit in memory.
• Or you are trying to run a program at too high an address.
Try compiling to disk, then removing the COMPILER file (page 27).

?SYNTAX ERROR
• Maybe you spelled a command wrong.
• Or maybe you used the COMPILE or COMMON command

without installing the Compiler.
• If you get a ?SYNTAX ERROR as a response to typing something

you know is legal (like "LIST"), memory is probably damaged,
and you should reboot. Try pressing Control-Reset first. (It
might not help, but it feels kind of good.)

26

COMPILER AND
COMPILER.SYSTEM

When you catalog the Beagle Compiler disk, you will see the two
files COMPILER (BIN) and COMPILER.5YSTEM (SYS) listed.

-+ COMPILER is the program that converts Applcsoft programs
into compiled format.

-+ COMPILER.SYSTEM is the program that runs programs that
have already been compiled.

When you boot the Beagle Compiler disk, here's what happens:
1. COMPILER.5YSTEM is installed into memory.
2. STARTUP is loaded and run.
3. COMPILER is installed in memory.

If no COM file named STARTUP exists on the disk, the above
process stops after step 1. Beagle Compiler's STARTUP loads
COMPILER, although you may change that if you like by replacing
STARTUP with your own version. STARTUP must be a COM file.

65535 r.=======;=e=~=;=;,=======~ $FFFF

,', ',' ','

:::::::::::::!FPN::!:':::!:::::
::: .::::::.:.:.' . : : : : . . ','

49152 I~'":";'..:..,'...:.·;..:.·..:,·..:.··..:.··..:.··..:.·:....··:....··.:..,·..:..,...:....:.....:......:....:.jl $eooo

BAS.le.SYSTEM

38400 $9600

32000 $7DOO

32000 $6600
HIMEM

24576 .. $6000

(HI-RES PAGE 2)

16384 $4000

(HI-RES PAGE 1)

8192 $2000

2048 PROGRAMS GROW FROM HERE $0800

0 : ::: ::: ::: (RESERVED): :::: : : :- $0000

OMIT ONE OF
THE ETO
SAVE SPACE.

27

OMIT COMPILER
TO SAVE SPACE

If you are only going to be running compiled (COM) programs
and not converting Applesoft (BAS) programs, you can conserve
about 6K of memory by not installing the COMPILER file. Anyone
of these methods will do the trick:

• Rename the STARTUP file on the Beagle Compiler disk before
booting. Then boot the disk.

• Or, replace Beagle Compiler's STARTUP with your own version
that doesn't install COMPILER. STARTUP must be a COM file .

• Or, copy the COMPILER.5YSTEM file onto another disk that
contains the file PRODOS (but not COMPILER or BASIC.5YSTEM).
Boot this disk and you will be able to run compiled programs,
but not convert Applesoft programs.

OMIT COMPILER.SYSTEM
TO COMPILE LARGE PROGRAMS

If you are going to compile a very large Applesoft program, there
may not be room in memory for your program and both Beagle
Compiler files. A solution might be to install the COMPILER file
without COMPILER.5YSTEM, then compile your Applesoft
program to disk.

To prevent COMPILER.5YSTEM from loading, boot a normal
ProDOS disk that loads BASIC.5YSTEM, then insert the Beagle
Compiler disk and type the command BRUN COMPILER (or
-COMPILER). Do this only once because COMPILER eats 6K of
memory each time it's installed.

Remember, COMPILER.5YSTEM will have to be installed
(alone or with COMPILER) to actually run compiled programs.

r.--

28

MENU

MENU is a COM file that lets you select disk drives and programs
from an AppleWorks-style menu. You can make MENU run
when you boot a disk by renaming it STARTUP. Or you can make
your STARTUP program run MENU.

To get MENU going, type -MENU. A list of all of the available
ProDOS drives will appear at the top of the screen. "S6,DI"
means Slot-6 Drive-I, "S6,D2" means Slot-6 Drive-2, etc.
S3,D2 represents ProDOS's RAM disk. Below that will be all of the
executable files (BAS, BIN and COM) on the highlighted drive.

Do this to run a program from one of your drives:
1. Press the "< >" keys or a number to highlight the drive

number that contains the program you would like to run.
That drive's file names will be displayed on the screen.

2. Press the ARROW keys and/or the TAB key to highlight the
program you would like to run.

3. Press the RETURN key to run the highlighted program.
If a subdirectory is highlighted when you press RETURN,
its file names will be displayed-go back to step 2.

To quit MENU at any time, press the ESC key.

MENU ERROR MESSAGES

• 1/0 ERROR might mean a drive door is open.
• NO DEVICE ERROR usually means you are trying to read a

slot's drive 2 when no drive 2 exists.
• PATH NOT FOUND probably means you switched disks.

OTHER POSSIBLE PROBLEMS

• If a program crashes, it probably wasn't written to be run (for
example, it might be a hi-res picture instead of a program).

• If you don't see a program listed on the screen and you know
it's on the disk, it might be a non-executable file type like TXT
or VAR. Or there might not be room for it on the screen. The
limit in 80-columns is 60 file names/IO disk drives. In 40
columns the limit is 30 file names/5 drives.

29

ENHANCEMENTS
TO COMPILER.SYSTEM

The programs on this page make patches to the Compiler.
Just BRUN the file after booting the Beagle Compiler disk
(COMPILER.5YSTEM must already be in memory).

INPUT.ANYTHING

This patch replaces the Compiler's INPUT statement with one
that allows commas and colons. This is very handy when
inputting data from text files.

SLOW.PDL

Installing SLOW.PDL puts a small delay in the PDL (paddle)
function so you will always get the correct reading.

The Applesoft BASIC Programmer's Reference Manual
recommends that if you are doing consecutive reads of the game
paddle or joystick with the POL function, that you put a small
loop in between the reads such as FOR X = 1 TO 10: NEXT. Because
the Compiler causes programs to run much faster, you will have
to increase these delays. Or utilize SLOW. POL.

FAST.HPLOT

FAST.HPLOT replaces the HI'LOT statement with one that is much
faster. It's not normally installed in the Compiler because it takes
up a considerable amount of memory. Don't use this patch
unless your programs are heavily into hi-res plotting. 4';

;- l' ~,
"-~~~

CALL-3109: POKE
230,32: CALL-3086:
HCOLOR~7: HPLOT
9,9: ONERR GOTO 1

HPLOT TO RND(l) *290,
RND(l) *200: RUN 2

30

APPLESOFT/PRODOS
COMMAND SUMMARY

Use this list for reference. For more complete information, check
the nearest Applesoft or ProOOS instruction manual.

A Applesoft
P ProDOS
* Beagle Compiler

f file/pathname
A$ string
X variable

m,n,i,j
x,y,z

integers
real numbers

A ABS(x) Absolute (positive) value of x
A AND Logical "and" in an IF statement

P APPENDf Add data to a sequential text file
A ASC("A") ASCII value of a character
A ASC(A$) ASCII value of a string's first character
A AT See DRAW, XDRAW, HUN and VLIN
A ATN Arctangent of x in radians

P BLOADf Load binary file f
P BRUN f Load and execute binary program f
P BSAVE f,An,Lm Save data; Address n, Length m

A CALLn Branch to machine language routine at n
P CAT Display disk contents in 40 columns
P CATALOG Display disk contents in 80 columns
P CHAIN f Run file f without clearing variables

A CHR$(n) Character whose ASCII value is n
A CLEAR Clear all variables

P CLOSEf Stop reading or writing a text file
A COLOR=n Set lo-res color to n (0-15)

* COMMON fl,f2 Compile a share-variables file to disk

* COMPILE fl,f2 Load f1 (BAS), compile and save as f2 (COM)
A CONT Continue a program
A COS(x) Cosine of x in radians

P CREATEf Create a subdirectory file
A DATA A$,x,y,z Strings and values to be READ
A DEF FN A(X)=f(x) Define a function
A DELn,m Delete program lines n through m

P DELETEf Delete file f from disk
A DIM X(n) Dimension a numerical array
A DIM A$(n) Dimension a string array
A DRAW n AT i,j Draw a hi-res shape n at i,j
A END Stop a program with no message

P EXECf Execute text file f from the keyboard
A EXP(x) e (2.718289) to the xth power

31

A FLASH Set flashing screen output (40-columns)
P FLUSH Write buffer to disk without closing file

A FN See DEF FN

A FORX=nTOm Let X=n, X=n+1... until X=m
P FRE Free all available memory

A FRE(O) Amount of free memory available
A GET A$ Wait for one-character user input
A GETX Wait for one-number user input
A GOSUBn Branch to subroutine at line n
A GOTOn Branch to line n
A GR View and clear lo-res page 1
A HCOLOR=n Set hi-res color to n (0-7)
A HGR View and clear upper hi-res page 1
A HGR2 View and clear full hi-res page 2
A HIMEM: n Set highest memory address available
A HLIN n,mATj Draw a horizontal lo-res line
A HOME Clear text screen to black
A HPLOTi,j Plot a hi-res point
A HPLOT i,j TO n/m Draw a hi-res line
A HTAB n Position cursor at horizontal position n
A IF...THEN... Logical "if" true, "then" execute
A P IN#n Take input from slot n
A INPUT X (or A$) Wait for user input
A INPUT "ABC";A$ (or X) Print "ABC' and wait for input
A INT(RND(l)*n) Random integer 0 to n-1
A INVERSE Set black-on-white text output
A LEFT$(A$,n) First n characters of a string
A LEN(A$) Number of characters in a string
A LETX=Y Set X equal to Y (LET is optional)
A LIST List a program from the beginning
A LIST-n List to line n
A LIST n- List from line n
A LIST n-m (or n,m) List lines n through m
A LOAD Load a program from tape (obsolete)

P LOADf Load a file from disk
P LOCKf Protect a disk file from alteration

A LOG(x) Natural logarithm of x
A LOMEM:n Set start-of-variables location
A MID$(A$,n,m) m characters of AS, starting at n

32

COMMAND SUMMARY (continued)

A
A
A
A
A
A
A
A

P
A
A
A
A
A
A
A

P
A P

P
P

A
A
A
A

P
A
A

P
A

P
A
A
A
A
A
A
A
A

P

*

NEW Delete current program from memory
NEXT X Definc the end of a raR-i\!EXT loop
NORMAL Set normal white-on-black text output
NOT Logical "not" in an IF statement
NOTRACE Cancel TRACE
ON X GOSUB n,m... caSUB Xth linc number
ON X GOTO n,m... Branch to Xth line number
ONERR GOTO n Branch to line n if an crror occurs
OPEN f Begin READ or WRITE of a text file
OR Logical "or" in an If statemcnt
PDL(n) Value (0-255) of paddle n (0-3)
PEEK(n) Memory value at location n
PLOT i,j Plot a lo-res dot
POKE n,m Sct location n to value m
POP Cancel most recent caSUB
POS(O) Horizontal cursor position
POSITION f Locate READ or WRITE in a file
PR#n Send output to slot n
PREFIX f Change default directory
PREFIXI Cancel current prcfix
PRINT Skip a text line
PRINT "ABC" Print characters within quotes
PRINT X Print value of variable X
READ A$ (or X) Read a DATA string or value
READ f Initiate reading a disk text file
RECALL X Retrieve array from tape (obsolete)
REM Programmer's remark follows
RENAME £1,f2 Rename a file on disk
RESTORE Reset pointer to first DATA statement
RESTORE f Retrieve strings and variables from file f
RESUME Continue program where error occurred
RETURN Branch back to statcment after caSUB
RIGHT$(A$,n) Last n characters of a string
RND(O) Repeat last random number
RND(l) Random number (0 to 0.999999999)
ROT=n Set rotation of a shape to n (0-64)
RUN Execute a program from bcginning
RUN n Execute a program from line n
RUN f Load and execute a program from disk
RUN f Load, compile & execute a program from disk

33

A SAVE Save a program to tape (obsolete)
A SAVEf Save a program f to disk
A SCALE=n Set scale for DRAW or XDRAW (0-255)
A SCRN(i,j) La-res screen color at point i,j
A SGN(X) Sign of X (+1, -1 or 0)
A SHLOAD Load shape table from tape (obsolete)
A SIN(x) Sine of x in radians
A SPC(n) n spaces in a PRINT statement
A SPEED=n Character output rate (0-255)
A SQR(x) Square root of x
A STEPn Increment-size in a FOR-NEXT loop
A STOP Stop program and print line number

P STOREf Store current variables as VAR file f
A STORE X Store an array on tape (obsolete)
A STR$(x) String equivalent of value x
A TAB(n) Position the cursor in a PRINT statement
A TAN(x) Tangent of x in radians
A TEXT Switch to text mode; cancel windows
A THEN Logical "then" in an IF statement
A TO See FOR and HPLOT
A TRACE Print line numbers as executed

P UNLOCKf Cancel LOCK
A USR(x) Pass x to a machine subroutine
A VAL(A$) Numeric value of a string

P VERIFY f Verify that file f is on the disk
A VLIN n,rn AT i Draw a vertical la-res line
A VTAB n Move the cursor to text line n
A WAIT i,j,k Insert a conditional pause

P WRITE f Initiate writing to a disk text file
A XDRAW n AT i,j DRAW in the opposite color
A XPLOT (Unused Applesoft reserved word)

P -f Execute file f
A ? Same as PRINT

34

MODIFYING APPLESOFT
VIA THE BEAGLE COMPILER
Actually, we're not going to tell you much on the next few pages,
but we do want to give all the hackers, snoopers and other nice
people out there a taste of how the Compiler works. Please
consider this information as a freebie only-don't call Beagle Bros
for help in analyzing the Compiler's functions.

HAVE FUN IMPROVING
(OR RUINING) APPLESOFfI
Programmers have always had a desire to modify the Applesoft
interpreter to add more power and efficiency to a somewhat stale
language. Since the interpreter is in ROM, it is a bit difficult to
patch. The Beagle Compiler's interpreter, however, is in RAM,
and you can change statements and functions at will.

The Jump Table starting on the next page goes from $9900 to
$99FF and contains vectors (addresses) to each part of the
Compiler that processes statements and functions. A few well
placed pokes from BASIC or machine language will "steer"
comr.lands to any area of memory you choose.

For example, the following program, when compiled, will
make HOME act like HGR. From there, you're on your own.

10 POKE 39208, PEEK (39282): REM $9928, $9972
20 POKE 39209,PEEK(39283): REM $9929, $9973
21 : REM $9928-29 IS THE ADDRESS FOR HOME
22 : REM $9972-73 IS THE ADDRESS FOR HGR
30 HOME: REM HOME NOW WORKS LIKE HGR
40 HCOLOR~3: HPLOT 0,0 TO 279,191

Warning: Programs like the one above can quickly open up a
whole can of WormS!

35

THE BEAGLE COMPILER
JUMP TABLE

Address Name Function

$9900 init Initialize and run the program
$9902 run RU1\ line number
$9904 clear CLEAR
$9906 restore RESTORE
59908 on ON GOTO/GOSUB
$990A goto GOTO
$99OC gosub GOSUB
$990E return RETURN

$9910 pop pop
59912 end END (halts program)
$9914 let assign value to sim pie numeric variable
$9916 for FOR (set TO value and initialize loop)
$9918 step STEP
$991A numprt evaluate and print a numeric value
$991C strprt evaluate and print a string value
$991E spe SPC

$9920 tab TAB
$9922 romma comma function in PRINT statement
$9924 crout print a RETURN
$9926 text TEXT
$9928 home HOME
$992A normal NORMAL
$992C inverse; INVERSE
5992E flash FLASH

$9930 next NEXT
$9932 nextvar NEXT statement with a variable
$9934 letstr assign value to simpIe string variable
$9936 onerr ONERR GOTO
$9938 pmum pR#
$993A innum IN#
$993C readn READ a numeric value
$993E reads READ a string value

59940 getn GET a numeric value (shouldn't be used)
59942 gets GET a string value
59944 plot PLOT
59946 vlin VLl:\'
59948 hlin HUN
$994A if IF
$994C inputn INPUT a numeric value
5994E inputs INPUT a string value

36

JUMP TABLE (continued)

Address Name Function

$9950 prtqm print a'?'
$9952 gr GR
$9954 draw DRAW
$9956 drawat DRAW with an AT
$9958 xdraw XDRAW
$995A xdrawat XDRAW with an AT
$995C hplot HPLOT
$995E hptotto HPLOTTO

$9960 stop STOP
$9962 hcolor HCOLOR
$9964 htab HTAB
$9966 vtab VTAB
$9968 color COLOR
$996A speed SPEED =
$996C poke POKE
$996E call CALL

$9970 hgr2 HGR2
$9972 hgr HGR
$9974 scale SCALE =
$9976 rot ROT =
$9978 usr USR
$997A pdt PDL
$997C peek PEEK
$997E letint assign value to simple integer variable

$9980 letary assign value to array
$9982 letstrary assign value to string array
$9984 dim DIM
$9986 himem HIMEM
$9988 lomem LOMEM
$998A resume RESUME
$998C ampersand & (use 2 of them)
$998E wait2 WAIT with 2 parameters

$9990 wait3 WAIT with 3 parameters
$9992 def DEFFN
$9994 byte byte numeric constant
$9996 integer integer numeric constant
$9998 fp floating point constant (packed)
$999A literal string constant
$999C getnvar get value of numeric variable
$999E getsvar get value of string var

37

Function

[Note: Arithmetic expressions
are in prefix (Polish) format]

OR
ANO
relational operator determined by the next byte:

0: <,3: <=,6: =, 9: <>, 12: >=, 15: >
string relational operator (see above)
+ (addition)
- (subtraction)
• (multiplication)
/ (division)

negate
+ (string concatenation)
SCRN
FRE
SQR
LOG
EXP
COS

SIN
TAN
ATN
get value of numeric array
get value of string array
FN (user-defined function)
save code pointer if RESUME exists
(before each statement that can generate an error)

process an error
prepare for a numeric or string input
reserved-you touch and we call the cops!

1\ (exponentiation)
NOT
ASC
CHR$
pas
LEN
LEFT$
RIGHT$

MID$ with 2 parameters
MID$ with 3 parameters
STR$
ABS
RND
SGN
INT
VAL

Address Name

$99AO or
S99A2 and
S99A4 relop

$99A6 strcomp
$99A8 add
$99AA minus
$99AC times
$99AE div

$99BO power
599B2 not
$99B4 asc
$99B6 chr
$99B8 pos
$99BA len
$99BC left
$99BE right

$99CO mid2
599C2 mid3
599C4 str
$99C6 abs
$99C8 md
599CA sgn
599CC int
599CE val

$9900 neg
59902 concat
$9904 san
$9906 fre
$9908 sqr
$990A log
$99DC exp
$990E cos

$99EO sin
$99E2 tan
$99£4 atn
$99E6 getnary
$99E8 getsary
$99EA En
599EC savres

$99EE error
$99FO input
$99F3-S99FF

END OF TABLE

38

USER-AVAILABLE ROUTINES
The following routines are available to help you in writing
assembly language routines that will interface with Applesoft:

Address Name

$98E8 MOVSTR

$98EB BYTE

$98EE PRTNUM

$98Fl ERROR

$98F4 GETSPA

$98F7 PRTSTR

$98FA PROC

$98FD EVAL

Function

Moves a string (no length byte, must end with 0 byte) to
string space which has already been allocated with
"GETSPA". On entry, A = LSB of string address and X =

MSB of string address.

Evaluates a numeric parameter and verifies that it is a
byte value (0-255). Anything else gives ILLEGAL
QUANTITY. The value is returned in both A and X.

Prints a numeric value. Set the carry flag if the value is
floating point (in the FAC). If the value is integer,
clear the carry flag and the value should be in X (LSB)
and A (MSB).

Calls ERROR to report an error. X should contain the
number of the error message (see Apple BASIC
Reference Manual). If ONERR is not enabled, the
program will stop and print the error message.

Allocates space in the string area. A = length of the
string. One additional byte is allocated because the
first byte contains the length of the string. Put the
string where $F6,$F7 points.

Prints the string pointed to by $F6,$F7.

Processes the next statement. A jump to this location is
done at the end of every BASIC statement. If you are
replacing a statement, your code should end with this.

Evaluates a numeric or string parameter.

o Be F6 FD BC9D~~ ~
.9 oob~i:}I;2C104 ~J!96:33Ji'F,1.~"",

97j.tl "t"fi309 DJ:'~~'A ~,,'.lO~'f$l9~~:P~
33 "ttl tlP-o.z 00 2. 4 0 IF22 <

39

VARIABLES
Variables are indicated by a byte value ($OO-FF). The values for
the variables are accessed by using the byte value as an index into
the tables at the addresses indicated by the following pointers:

vtype ($78): Variable type
bit 7 = 1 if array, 0 if not
bit 6 = 1 if string, 0 if numeric
bit 5 = 1 if FN (user-defined function)
bit 4 = 1 if integer
bits 0-3 = number of dimensions if array

The following information depends upon the type of variable involved.
FP=floating point. LSB=least significant byte. MSB=most significant byte.

($7£):

($7C):

($7A):

($80):

vval1

vval4

vval2

vva13

Array: LSB of address of array header
String: LSB of address of string
FP: Non-zero value indicates this is floating

point type. 1st byte of packed FP value.
Integer: This value is zero if variable has an

integer value.

Array: MSB of address of array header
String: MSB of address of string
FP: 2nd byte of FP value
Integer: LSB of integer value

Array: LSB of address of array
FP: 3rd byte of FP value
Integer:MSB byte of integer value

Array: MSB of address of array
FP: 4th byte of FP value

vval5 ($82): Array: Number of dimensions, 0 if not
dimensioned yet

FP: 5th byte of FP value

If variable A$ has a variable index of 2, then the folloWing code would assign
A$ the string pointed at by PTR:

LDY #2 ;variable A$
LDA IlT?-
STA ($7A),Y ;store LSB of address
LDA :''1?-+ 1
STA ($7C),Y ;store MSB of address

INDEX

Address of program ,16
Ampersand (&) "., 20
Appended machine code .. 24
Applesoft " "., 7,8,30
Applesoft, changing 13,34
Backups "."., .. ".. "." 3
Break at $XXXX message 14,23
Chain , " 18
Changing programs .", 13
Commands "." "."." ,. 30
COM files " ""."". 8,11
COMMON command 18,19
COMPILE command .. 11,18,19
COMPILER file " ".,., 6,26,27
COMPILER.SYSTEM file. 6,26,27
Control-C "."." "" 14
CVR files "." ".". 19
DOS 3.3 "."" ".. ".".""."".4
Errors " " 23-25

<?>, <#>, <A>, <*> 24
Error at $XXXX message 23
File Type Mismatch " 25
Line nos" converting .. " 23
No Buffers Available 25
Not a Compiled Program.25
Program Too Large 25
Syntax Error "" 25

FAST.HPLOT program " 29
Giving programs away 6
G.P.L.E 5
HpLOT speed "" 29
INT files 8,11
INPUT.ANYTHING program 29
Installing the Compiler...8,27
Joystick problems " 29
Licensing the Compiler... 6
ME U program 28
NOTES program " "" "" 7
Paddle problems " 29
PRINT. LINES program " 23
PROGRAM WRITER """.." 5
Relocating programs "." 16
RESTORE command "..... 19
Running programs 10,12,15
Saving programs "" 11
Saving space 27
Selling programs "" "" 6
SLOW.PDL program ".." 29
Speed, maximum 17
STARTUP program "..".26,27
STORE command " " 19
TESTPROGRAM " " 9
Uncompilable commands .. 9
Worms, can of """...... 34

I

Disclaimer of All Warranties and Liabilities
Even though the software described in this manual has been tested and reviewed, neither
Beagle Bros nor its software suppliers make any warranty or representation, either express or
implied, with respect to this manual, the software and/or the diskette; their quality, perfor
mance, merchantability, or fitness for any particular purpose, As a result, the diskette, software
and manual are sold "as is," and you, the purchaser, are assuming the entire risk as to their
quality and performance, In no event will Beagle Bros or its software suppliers be liable for
direct, indirect, incidental, or consequential damages resulting from any defect in the diskette,
software, or manual, even if they have been advised of the possibility of such damages. In parti
eular, they shall have no liability for any programs or data stored in or used with Beagle Bros
products, including the costs of recovering or reprodUcing these programs or data. Some states
do not allow the exclusion or limitation of implied warranties or liability for incidental or conse
quential damages, so the above limitation or exclusion may not apply to you,

A bout ProDOS: This product includes software, ProDOS, licensed from Apple Computer, Inc.
Apple makes no warranties, either express or implied, regarding the enclosed software
package, its merchantability or fitness for any purpose. Some slates do not allow the exclusion
or limitation of implied warranties or liability for incidental or consequential damages, so this
limitation or exclusion may not apply to you.

\

	Image1.jpg
	Image2.jpg
	Image3.jpg
	Image4.jpg
	Image5.jpg
	Image6.jpg
	Image7.jpg
	Image8.jpg
	Image9.jpg
	Image10.jpg
	Image11.jpg
	Image12.jpg
	Image13.jpg
	Image14.jpg
	Image15.jpg
	Image16.jpg
	Image17.jpg
	Image18.jpg
	Image19.jpg
	Image20.jpg
	Image21.jpg
	Image22.jpg
	Image23.jpg
	Image24.jpg
	Image25.jpg
	Image26.jpg
	Image27.jpg
	Image28.jpg
	Image29.jpg
	Image30.jpg
	Image31.jpg
	Image32.jpg
	Image33.jpg
	Image34.jpg
	Image35.jpg
	Image36.jpg
	Image37.jpg
	Image38.jpg
	Image39.jpg
	Image40.jpg
	Image41.jpg
	Image42.jpg

